Business analytics plays a significant role today in driving business success. It uses explanatory and predictive modeling based on extensive use of statistical analysis to drive decision making. Business analytics helps organizations in answering critical questions such as, Who are my most valuable customers? What are my most important products? What are my most successful campaigns? Why is this happening? What if these trends continue? What will happen next (that is, predict)? What is the best that can happen (that is, optimize)?
Our team of data scientists and analysts with their domain expertise across Retail, Telecom, BFSI, Healthcare & Pharma, and Hospitality, help our clients in drawing meaningful and actionable insights from the ocean of available data.
AnalyticsWorx, adopts a flexible approach to match the specific needs of each business, which can be any one or a combination of the following mentioned offerrings:
Managing Analytics project end to end right from defining the business objective to analysing the data and all the way through to prescribing the actionables
Establishing and maintaining a team of Data Scientists and analyst dedicated for the client to take are of enterprise analytics needs
Working as an extension of client's Analytics team and assisting in managing the overflow of work or any gap in the client teams skill sets. The exposure of our team of Data scientists spans across several industry verticals (Telecom, Retail, BFSI, Hospitality & Healthcare), latest Analytics Tools (SAS, R, Python, Tableau, Qlikview & PowerBI) and ever evolving statistical techniques (Predictive modeling , Machine Learning etc.)
To make highly informed decisions quickly,
organizational leaders need to be able to access and interpret data in
real-time. Information, and the ability to decipher and act on it swiftly, has
become a competitive differentiator. To identify new business opportunities
ahead of the market, business leaders require the ability to access, evaluate,
comprehend, and act on data faster and more effectively than ever
before.
Our expertise in the Business Intelligence and Visualization practice enables us to tap data from disparate sources and multiple formats to provide you with actionable insights, right business metrics and visualization for informed decision making. We crunch the data at the backend and present a meaningful information for decision making on the front-end.
Smart Dashboards
If you are looking for a flexible business intelligence system that's powerful
enough to crunch complex data, then AnalyticWorxs "SMART DASHBOARDS" are the
right choice for you. Businesses today need BI tools to measure their
industry-specific metrics and KPIs, and provide on-time, ask-any-question data
analysis, for department heads, high-level executives and any business user to
make the best decisions possible.
With AnalyticsWorxs "SMART DASHBOARDS":
Big Data Visualization
One of the most valuable means through which to make sense of big data, and thus
make it more approachable to most people, is through data visualization. Data
visualization is way finding, both literally, like the street signs that direct
you to a highway, and figuratively, where colors, size, or position of abstract
elements convey information. In either sense, the visual, when correctly
aligned, can offer a shorter route to help guide decision making and become a
tool to convey information critical in all data analysis.
Let our BI Experts show you the way:
Data integration involves combining data from several disparate sources, which are stored using various technologies and provide a unified view of the data. Data integration becomes increasingly important in cases of merging systems of two companies or consolidating applications within one company to provide a unified view of the company's data assets. The later initiative is often called a data warehouse.
Probably the most well known implementation of data integration is building an enterprise's data warehouse. The benefit of a data warehouse enables a business to perform analyses based on the data in the data warehouse. This would not be possible to do on the data available only in the source system. The reason is that the source systems may not contain corresponding data, even though the data are identically named, they may refer to different entities.
EXTRACT, TRANSFORM AND LOAD (ETL)
ETL, or Extract, Transform and Load, eases the combination of heterogeneous sources into a
unified central repository. Usually this repository is a data warehouse or mart which will
support enterprise business intelligence. A unified view of your data is imperative. Without
this, every link in the big data chain-from machine learning to artificial intelligence to
information gathered from the Internet of Things-becomes less useful.
ETL combines three important functions (extract, transform, load) required to get data from
one big data environment and putting it into another data environment. Traditionally, ETL
has been used with batch processing in data warehouse environments. Data warehouses provide
business users with a way to consolidate information to analyze and report on data relevant
to their business focus. ETL tools are used to transform data into the format required by
data warehouses.
ETL provides the underlying infrastructure for integration by performing three important functions:
MASTER DATA MANAGEMENT
Master data management (MDM) is a comprehensive method of enabling an enterprise to link all
of its critical data to one file, called a master file that provides a common point of
reference.
DATA QUALITY
Data quality management is a crucial part of any data integration process. It may be
considered the first step to the integration process, as quality data is the key to
achieving profitable insights. The data integration analysis will not be successful until
good data quality processes are in place.
DATA HARMONIZATION
Data harmonization is the improvement of data quality and utilization through the use of
machine learning capabilities. Data harmonization interprets existing characteristics of
data and action taken on data and uses that information to transform or suggest subsequent
data quality improvements.Reduce information requirements by eliminating redundancies and
duplications, thus making the submission easier,Improve the quality of the data and
therefore reduce errors,Facilitate receiving, processing and checking of information, and
Facilitate exchange of data and improve automation as this ensures inter-operability.
COMMON DATA MODEL (CDM)
Common Data Modeling is defining the unifying the structure used in allowing heterogeneous
business environments to interoperate. A Common Data Model is very critical to a business
organization.
Especially with today's business environment where it is common to have multiple
applications, a Common Data Model seamless integrates seemingly unrelated data into useful
information to give a company a competitive advantage over its competitors. Data Warehouses
make intensive use data models to make companies have a real update on how the business is
faring.